인공지능 붐이 인지 제법 시간이 되어가는데 그 열기가 식을줄 모르는 것 같다, 덩달아 관련 책들이 서점에 도배하다 시피 진열되어 있다.
2018년, 2019년까지는 다양한 입문서 위주로 책들이 나왔던것 같고 2020년부터는 다양한 활용서, 중급이상의 고급 기술서 그리고 새로운 모델과 기술들에 대한 내용을 다루는 책들도 점차 많아지고 있다. 이제 우리가 하는 흔한 CNN, RNN 등등을 설명하는 책들보다는 최소 한단계 수준이 높아졌다고 봐야할듯 그만큼 관련 분야가 보편화되고 매우 빠르게 발전하고 있고 그 발전에 대한 내용을 책을로 엮어내는 경우가 많아졌다는 의미일테다... 그리고 인공지능에 필요한 수학들을 다루는 책들도 많아졌고...
그런의미에서 그레디언트 부스팅, 그중에서도 XGBoost를 설명하고 있는 재미난 책이 한권이 출판된 것 같다.
앙상블 알고리즘을 크게 배깅과 부스팅으로 나눌수 있는데 그레디언트 부스팅은 그중 부스팅 계열 앙상블 알고리즘이다. 그레디언트 부스팅 알고리즘은 회귀분석 또는 분류를 구행하는 예측모형으로 tabular format data(row와 column 형태의 table 형식)에 대한 예측 성능이 가장 높다고 알려진 알고리즘이다.
이를 지원하는 주요 패키지로 LightGBM, CatBoost, XGBoost 가 있는데 이 책은 그중 XGBoost와 사이킷런을 이용하여 그레디언트 부스팅을 수행하는 방법을 설명하고 있다.
번역은 유명한 박해선님이 맡아서 진행을 했고 그레디언트 부스팅에 대한 출간된 단행본이라 내용도 모델의 성능을 고민해보는 분들에게 좋은 지침이 될 만하다 생각한다.
번역서에는 원서에 없는 LightGBM과 CatBoost 관련 내용도 부록에 수록해놨으니 XGBoost와의 차이나 개별 모듈에 대한 특징을 간단하게나마 살펴보고 비교해 볼 수 있을 꺼라 생각한다.
흔하디 흔한 머신러닝/딥러닝 책에 식상함을 느낀다면 꼭한번 책겨볼만한 좋은 책이라 생각한다.
※ 본 리뷰는 IT 현업개발자가, 한빛미디어 책을 제공받아 작성한 서평입니다.
'마린일병의 사람사는 이야기 > 주제 넘은 서평' 카테고리의 다른 글
[서평][IT인프라][네트워크] 한 권으로 끝내는 네트워크 기초 / 길벗 (0) | 2022.06.21 |
---|---|
[서평][에세이] 딸하고 밀당 중입니다. / 샘터 (0) | 2022.06.06 |
[서평][취미][와인] 와인의 맛 / 미문사 (0) | 2022.05.24 |
[서평][소설][수학] 미르카, 수학에 빠지다 / 이지북 (0) | 2022.05.24 |
[서평][자기개발] 하버드 감성지능 강의 / 북아지트 (0) | 2022.04.24 |
댓글